Krüppel-Like Factor 5 Mediates Proinflammatory Cytokine Expression in Lipopolysaccharide-Induced Acute Lung Injury through Upregulation of Nuclear Factor-κB Phosphorylation In Vitro and In Vivo
نویسندگان
چکیده
Acute lung injury (ALI) is associated with an inflammation-mediated process, and the transcription factor, Krüppel-like factor 5 (KLF5), might play a crucial role in inflammatory lung disease. In this study, we evaluated KLF5, reactive oxygen species (ROS), and inflammatory responses in a lipopolysaccharide- (LPS-) induced ALI model to elucidate the role of KLF5 in ALI. Our data indicated that LPS upregulates proinflammatory cytokine expression in human bronchial epithelial cells in a dose-dependent manner. We observed upregulated KLF5 protein expression in human bronchial epithelial cells exposed to LPS, with peak expression 1 h after LPS treatment, and subsequent upregulation of p65 protein expression and p65 phosphorylation at Ser276. These results indicate that KLF5 mediates proinflammatory cytokine expression by upregulating nuclear factor-kappaB (NF-κB) phosphorylation at p65 in response to LPS. LPS treatment also increased ROS production and simultaneously upregulated KLF5 expression and NF-κB translocation. N-acetylcysteine significantly reduced ROS levels and KLF5 and NF-κB translocation in nuclear extracts. Therefore, N-acetylcysteine pretreatment before LPS exposure reduces ROS, downregulates KLF5 expression, and subsequently reduces inflammatory responses by scavenging ROS. Overall, our study results indicate that KLF5 mediates proinflammatory cytokine expression through upregulation of NF-κB phosphorylation at p65 in LPS-induced ALI.
منابع مشابه
p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملThe UII/UT System Mediates Upregulation of Proinflammatory Cytokines through p38 MAPK and NF-κB Pathways in LPS-Stimulated Kupffer Cells
The urotensin II (UII)/UII receptor (UT) system is closely related to immune inflammation. In acute liver failure (ALF), the UII/UT system can promote the production and release of proinflammatory cytokines, inducing an inflammatory injury response in liver tissue. However, the mechanism by which the hepatic UII/UT system promotes proinflammatory cytokine production and release is not clear. To...
متن کاملIsovitexin Exerts Anti-Inflammatory and Anti-Oxidant Activities on Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting MAPK and NF-κB and Activating HO-1/Nrf2 Pathways
Oxidative damage and inflammation are closely associated with the pathogenesis of acute lung injury (ALI). Thus, we explored the protective effect of isovitexin (IV), a glycosylflavonoid, in the context of ALI. To accomplish this, we created in vitro and in vivo models by respectively exposing macrophages to lipopolysaccharide (LPS) and using LPS to induce ALI in mice. In vitro, our results sho...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملAsiaticoside attenuates hyperoxia-induced lung injury in vitro andin vivo
Objective(s): Asiaticoside (AS) displays anti-inflammation, and anti-apoptosis effect, but the role of AS in hyperoxia-induced lung injury (HILI) treatment is undefined. Therefore, the aim of this study was to investigate the effects of AS on HILI on premature rats and alveolar type II (AEC II) cells.Materials and Methods: Sprague-Dawley...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014